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Problem 4.76

The shift in the energy levels in Example 4.6 can be understood from classical electrodynamics.
Consider the case where initially no current flows in the solenoid. Now imagine slowly increasing
the current.

(a) Calculate (from classical electrodynamics) the emf produced by the changing flux and show
that the rate at which work is done on the charge confined to the ring can be written

dW

dΦ
= −q ω

2π
,

where ω is the angular velocity of the particle.

(b) Calculate the z component of the mechanical angular momentum,77

Lmechanical = r×mv = r× (p− qA), (4.231)

for a particle in the state ψn in Example 4.6. Note that the mechanical angular momentum
is not quantized in integer multiples of ℏ!78

(c) Show that your result from part (a) is precisely equal to the rate at which the stationary
state energies change as the flux is increased: dEn/dΦ.

Solution

Below is an illustration of the solenoid with a larger, coaxial ring of radius b. If the current
increases, then the magnetic field within the solenoid becomes stronger. By Faraday’s law, this
induces an electric field within the ring to oppose the increase in magnetic flux.

77See footnote 62 for a discussion of the difference between the canonical and mechanical momentum.
78However, the electromagnetic fields also carry angular momentum, and the total (mechanical plus electromag-

netic) is quantized in integer multiples of ℏ. For a discussion see M. Peshkin, Physics Reports 80, 375 (1981) or
Chapter 1 of Frank Wilczek, Fractional Statistics and Anyon Superconductivity, World Scientific, New Jersey (1990).
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Part (a)

The induced electric field is tangent to the ring at every point and constant along the ring’s
circumference. According to Faraday’s law,

−dΦ
dt

=

�
Einduced · dl

= Einduced

�

x2+y2=b2

dl

= Einduced · 2πb,

which means

Einduced = − 1

2πb

dΦ

dt
.

The work that this field does on the charge is

dW = F · dl

= qEinduced · dl

= q(Einducedϕ̂) · (b dϕ ϕ̂)

= qbEinduced dϕ

= qb

(
− 1

2πb

dΦ

dt

)
dϕ

= q

(
− 1

2π

dΦ

dt

)
ω dt

= −q ω
2π

dΦ.

Therefore,
dW

dΦ
= −q ω

2π
.
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Part (b)

Start by rewriting the mechanical angular momentum.

Lmechanical = r×mv

= r× (p− qA)

= r× p− q(r×A)

= L− q

[
(rr̂)×

(
Φ

2πr
ϕ̂

)]
= L− q

Φ

2π
(r̂× ϕ̂)

= L− q
Φ

2π
ẑ

The z-component of the mechanical angular momentum is

Lmechanical,z = Lz − q
Φ

2π

= −iℏ ∂

∂ϕ
− q

Φ

2π
.

Let it act on ψn to determine the eigenvalue.

Lmechanical,zψn =

(
−iℏ ∂

∂ϕ
− q

Φ

2π

)
ψn

=

(
−iℏ ∂

∂ϕ
− q

Φ

2π

)
Aeinϕ

= −iℏ d

dϕ
(Aeinϕ)− q

Φ

2π
(Aeinϕ)

= −iℏ(inAeinϕ)− q
Φ

2π
(Aeinϕ)

= nℏ(Aeinϕ)− q
Φ

2π
(Aeinϕ)

=

(
nℏ− q

Φ

2π

)
Aeinϕ

=

(
nℏ− q

Φ

2π

)
ψn

Therefore, if you measure the z-component of the mechanical angular momentum for a particle in
the state ψn, you will get

nℏ− q
Φ

2π
.
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Part (c)

The stationary state energies were determined in Example 4.6. (See Equation 4.206 on page 184.)

En =
ℏ2

2mb2

(
n− qΦ

2πℏ

)2

, (n = 0,±1,±2, . . .)

Calculate the derivative with respect to Φ by using the chain rule.

dEn

dΦ
=

d

dΦ

[
ℏ2

2mb2

(
n− qΦ

2πℏ

)2
]

=
ℏ2

2mb2
· 2

(
n− qΦ

2πℏ

)
d

dΦ

(
n− qΦ

2πℏ

)

=
ℏ2

mb2

(
n− qΦ

2πℏ

)(
− q

2πℏ

)
=

1

mb2

(
nℏ− q

Φ

2π

)(
− q

2π

)
The first quantity in parentheses is the z-component of the particle’s mechanical angular
momentum from part (b), which can also be written as Iω = mb2ω. I is the particle’s moment of
inertia about the z-axis.

dEn

dΦ
=

1

mb2
(Iω)

(
− q

2π

)
=

1

mb2
(mb2ω)

(
− q

2π

)
= −q ω

2π

=
dW

dΦ

This is the result of part (a).
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